mp 124-125 °C; mass spectrum, m/e 452 (M⁺·), 200, 199; IR ν_{max} **2030** cm-'. Calcd for CaH16N6S2: C, **63.7;** H, **3.56; N, 18.57;** S, **14.17. Found: C, 63.2; H, 3.50; N, 18.6; S, 14.2. Carbazole (18): 8%;** mp **246-247** OC.

Acknowledgment. We acknowledge support from the Consiglio Nazionale Ricerche, Rome.

Registry No. la, **59328-04-0; lb, 59327-96-7; IC, 62284-29-1;** 7, **54467-95-7; 8,78715-74-9; 9, 149-30-4; 10, 23385-34-4; 12,67173-642;** 13, **78715-75-0; 14, 78715-76-1; 16, 67173-62-0;** 17, **67173-63-1; 18,** 86-74-8; 19, 1914-12-1; CS₂, 75-15-0; NaI, 7681-82-5.

Fluorination of Methanediphosphonate Esters by Perchloryl Fluoride. Synthesis of Fluoromethanediphosphonic Acid and Difluoromethanediphosphonic Acid'

Charles E. McKenna* and Pei-de Shen²

Department of Chemistry, University of Southern California, Los Angeles, California 90007

Received June 3,1981

Although α -halogenated chloro, bromo, and iodo derivatives of tetraalkyl methanediphosphonates **1** have been **known** for some time,3 the corresponding fluoro derivatives **(2, 3)** have not been available. Very recently, tetraethyl difluoromethanediphosphonate **(3a)** was prepared in 12% overall yield from dibromodifluoromethane and sodium diethyl phosphonate via diethyl bromodifluoromethanephosphonate. 4 Our interest in devising a direct route to both mono- and **difluoromethanediphosphonates** has led us to investigate the reaction of alkyl methanediphosphonates with perchloryl fluoride. $5,6$ This reagent has been shown to α -fluorinate diethyl sodiomalonate,⁷ giving a mixture of the mono- **(29** %) and difluoromalonate **(42** %) esters in toluene;⁸ in ethanol, alkylation of the carbanion **also occurs,8** resulting in unwanted side product. The same method has been used to prepare other α -fluoro carboxylate derivatives, e.g., a series of 2-fluor0 fatty acids with antifungal activity⁹ and 2-alkyl 2-fluorocyanoacetates.¹⁰

In general, analogy between the methanedicarboxylate and methanediphosphonate groups in terms of methylene reactivity must be applied with caution. However, we find that perchloryl fluoride reacts smoothly with tetraisopropyl **or** tetraethyl methanediphosphonate carbanion in dry toluene to form both the corresponding fluorophosphonate and difluorophosphonate esters **(2a,b, 3a,b)** in total yields of up to *85%,* if potassium tert-butoxide rather than Na or NaOEt is used **as** base (see Scheme I). The fluorination

- **(4) D. J. Burton and R. M. Flynn,** *J. Fluorine* **Chem., 15,263 (1980). (5) J. F. Gall** in **"Kirk-Other Encyclopedia** of **Chemical Technology", Vol9,2nd** *ed.,* **Interscience, New York, 1966, pp 598-610.**
- (6) For handling and safe use of this reagent see also: Bulletins DC-1819 and ds I-1819, Pennsalt Chemicals Corp., Philadelphia, PA.
The company is now Pennwalt and distributes perchloryl fluoride
through its subsidiary,
- *Soc.,* **80, 6533 (1958).**
- **(8) H. Gershon, J. A. A. Renwick, W. K. Wynn, and R. D'Ascoli,** *J. Org. Chem.,* **31, 916 (1966).**
- **(9) H. Gershon and R. Parmegiani,** *J. Med. Chem.,* **10, 186 (1967). (10) H. Gershon,** S. **G. Schulman and A. D. Spevack,** *J. Med. Chem.,* **10, 536 (1967).**
- **Schunn,** *J. Am. Chem. Soc.,* **84, 4454 (1962). (11) J. D. Baldeschwieler, F. A. Cotton, B. D. N.** Rao, **and R. A.**

Scheme **I**

Scheme **I1**

^{*a*} As described in the Experimental Section, ^{*b*} By ¹⁹F NMR **analysis.** Retreatment **of** Preceding reaction mixture. \overline{d} Isolated yields.

reaction proceeds virtually as a titration of base with perchloryl fluoride and shows a readily recognizable end point marked by a characteristic color change from dark to pale yellow. Termination of the reaction is also indicated by the end of a temperature rise accompanying the reaction and cessation of perchloryl fluoride uptake.

Results illustrating the effects of some of the reaction parameters are summarized in Table I. By suitable adjustment of the proportion of starting materials, either product can be made to predominate; for example, with 1 equiv of potassium tert-butoxide as base, the monofluoromethane derivative of tetraisopropyl methanediphosphonate **(2b)** was prepared in **48%** yield. With 2 equiv of this base, the difluoro **(3b)** derivative could be prepared directly in **43%** yield, with an increase to **73%** being possible on further reaction of the monofluoro product. The choice of base is important in this respect, since only a single equivalent of Na could be used, while NaOEt would be expected to give some alkylation side product, as discussed above. In addition to being a stronger base (the α -proton of 1 is less acidic than the α -proton in ethyl malonate), potassium tert-butoxide offers the advantages of allowing addition of more than 1 equiv of base if desired while avoiding unwanted alkylation of the carbanion and, in fact, gives the best yields. Exposure of the sodium salt¹¹ of tetraethyl methanediphosphonate **(la)** in toluene solution to a stream of perchloryl fluoride results in the formation of resinous material, with reduced amounts of the desired mono- **(2a)** and difluorinated **(3a)** products. The yields are also lower when Na/toluene is used in place of potassium tert-butoxide with the isopropyl ester **lb.** With potassium tert-butoxide **as** the base, yields appear to be somewhat higher with the isopropyl ester than with the ethyl ester **la;** addition of more than 1 equiv of base to the latter is accompanied by formation of a monophosphoryl side product, identified as **4a.** This com-

⁽I) Presented as part of a paper given at the International Conference on Phosphorous Chemistry, Duke University, Durham, N.C., June 1-6, 1981.

⁽²⁾ Chinese Visiting Scholar, on **leave from the Shenyang Research Institute of Chemical Industry, Shenyang, Liaoning, China.**

^{(3) 0.} T. Quimby, J. D. Curry, D. A. Nicholson, J. B. Prentice, and C. H. Roy, *J. Organomet. Chem.,* **13, 199 (1968).**

pound evidently arises from cleavage of a C-P bond in **3a** (Scheme 11).

Treatment12J3 of the alkyl esters **2** and **3** with bromotrimethylsilane gives the expected trimethylsilyl esters **5** and **6.** In agreement with a similar finding in the dealkylation of diethyl **trichloromethanephosphonate,12** the electron-deficient **2** and (particularly) **3** display somewhat attenuated reactivity in silyldealkylation by bromotrimethylsilane (BTMS), consistent with a phosphonium-like transition state in this reaction.12 The ethyl esters **2a** and **3a** react under significantly milder conditions than the isopropyl esters **2b** and **3b,** again confirming earlier observations.¹³

Conversion of the ethyl or isopropyl esters **(2,3)** to the corresponding trimethylsilyl esters **(5, 6)** has little effect on the 19F NMR chemical shifts, but the 31P NMR resonances are shifted upfield by 19 and 18 ppm, respectively (Experimental Section). **An** upfield shift of about 20 ppm nances are shifted upfield by 19 and 18 ppm, respectively
(Experimental Section). An upfield shift of about 20 ppm
per pair of alkyl \rightarrow silyl substitutions appears to be
characteristic for silyldeally lating of phembona characteristic for silyldealkylation of phosphonate and diphosphonate esters and as such provides a useful means of monitoring the progress of the reaction.¹²

Hydro1ysisl2J3 of **5** and **6** affords respectively fluoromethanediphosphonic acid (7) and difluoromethanediphosphonic acid **(8)** (Scheme 111). Taken together with the parent methanediphosphonic acid (MDPA), these new compounds show a smooth trend of decreasing melting point (MDPA, 203 °C;¹⁴ 7, 162 °C; 8, 87 °C) and increased nuclear magnetic shielding at phosphorous as the α -hydrogen atoms of MDPA are replaced by fluorine atoms (chemical shifts (δ) relative to H_3PO_4 : MDPA, 17.6;¹⁴ 7, 10.5; **8,** 3.7; Experimental Section).

The effect of fluorine substitution on the acidity of MDPA is of interest. In determining neutralization equivalents for 7 and 8, we obtained approximate pK° ₃ values of 6.5 **(7)** and 6.0 **(8),** corrected for a statistical factor of $log(3/2)$. The error in these values is at least ± 0.4 pK units. Grabenstetter and co-workers¹⁵ have made careful determinations of pK values for a series of gem-diphosphonic acids. The data were found to correlate linearly with ³¹P chemical shifts and also with Taft σ^* substitutent constants. We have used these empirical equations to estimate pK^o values for 7 and 8, which are compared with experimental pK° data¹⁵ for MDPA (Table II). It should be noted that Grabenstetter¹⁵ developed two alternative Taft equations for $pK^{\circ}{}_{4}$, one giving an optimal

Table II. pK° Values^{*a*} of Methanediphosphonic Acids, XYC[P(O)(OH), 1,

	. XY				
	HF b		FF^b		
	31 _p	σ^*	31 p	σ*	HН
$\frac{\mathrm{pK}^\circ}{\mathrm{pK}^\circ}$	10.1 ^c 6.62^{f} 2.78h	10.2 ^d 6.82^{g} 2.33^{i}	9.07 ^c 6.08^{f} 2.57h	9.12 ^d 5.89 ^g 1.34^{i}	11.0 ^e 7.4e 3.1 ^e

For $\mu = 0$, uncorrected. ^b Calculated from empirical equations¹⁵ based on $\frac{31P}{6}$ values or Taft σ^* coefficients, as indicated below. A $\sigma^*(F)$ of 3.1 was used.¹⁶ An as indicated below. A $\sigma^*(\mathbf{r})$ of 3.1 was used.³⁵ An uncertainty¹⁷ of ~0.5 pK units is introduced by our uniform use of acid ³¹P 6 values.¹⁵ c pK° = 8.51 + 0.15 σ^d pK° = 11.29 – 0.35 σ^* . e^e Experiment was used.¹⁶ An

froduced by our
 $\int_{0}^{\infty} pK^{\circ} = 8.51 + 0.15\delta$.

pantel deta ¹⁴ $\int_{0}^{R} F_{\delta}^{\circ}$. pK° = $2.46 + 0.038$. $i pK^{\circ} = 3.32-0.32 \Sigma \sigma^*$.

fit with bulkier substitution (e.g., CH_3 , CH_3 or Cl, Cl) and one to fit data for less sterically hindering substituents (e.g., H, H or H, Br). The second equation gives superior agreement with pK^o_4 values calculated from ³¹P chemical shift data for both **7** and **8,** presumably reflecting the small size of the fluoro group.

The data presented in Table I1 indicate that the NMR and Taft approaches give similar pK°_4 and pK°_3 values, and the calculated pK^o_3 values are consistent with our experimental estimate given above, but the pK° values are divergent. Because the correlation coefficient for pK^o_{2} values calculated by the 31P chemical shift method was significantly smaller for pK^o_2 values than for pK^o_3 and pK^o ₄ values (0.77 vs. 0.96 and 0.99, respectively),¹⁵ we believe that the $pK^o{}_2$ results derived from application of the Taft equation are probably more accurate. This choice is supported by a published estimate of 2.20 for the $pK^{\circ}{}_{2}$ of bromomethanediphosphonic acid.15 Since the latter acid has pK^o ₄ = 10.2 and pK^o ₃ = 6.6¹⁵ (cf. corresponding values calculated for 7 and 8 in Table II), a $pK^o{}_2$ greater than 2.5 for **7** or particularly **8,** predicted by the 31P method, appears unreasonable.

The monofluoro acid 7 is predicted to have a pK° of \sim 10.1, or 1 order of magnitude below that of MDPA, while the fourth proton of the difluoro acid **8** is calculated to be 100-fold more acidic than in the unfluorinated acid. The acidity of **7** is about comparable to that of dichloromethanediphosphonic acid (pK^o_4 (expt) = 9.8, pK^o_3 (expt) = 6.115), which in turn is weaker than **8,** expected to be the strongest halomethanediphosphonic acid.

The enhanced acidity due to the presence of one or two α -fluoro groups was also apparent in the derivative chemistry of 7 and **8.** MDPA forms a bis(dicyclohexy1amine) salt, but treatment of **7** and **8** with a small excess of the base led to formation of the tris(dicyclohexy1amine) derivatives **9** and **10** (Experimental Section).

In conclusion, perchloryl fluorination of methanediphosphonate esters 1 has evident promise as a general method for entry into the fluoromethanediphosphonates **2** and **3,** which are easily converted into the corresponding fluoromethanediphosphonic acids 7 and **8.** These substances have possible biochemical applications **as F-labeled,** hydrolysis-inert analogues of pyrophosphate, both **per** se and as synthates for new fluorine-containing oligophosphonate analogues of compounds such as ATP.^{1,18}

Experimental Section

Melting points were determined by using a Thomas-Hoover capillary apparatus except in the case of **7** and 8, for which a

⁽¹²⁾ C. E. McKenna, M. T. Higa, N. H. Cheung, and M. C. McKenna, *Tetrahedron Lett.,* **155 (1977). (13)** C. E. McKenna and J. Schmidhauser, *J. Chem.* **SOC.,** *Chem.*

Commun., 739 (1979).

(14) Compiled in J. D. Curry and D. A. Nicholson, "Topics in Phos-

phorous Chemistry", Vol. 7, E. J. Griffith and M. Grayson, Eds., Wiley-

Interscience, New York, 1972, p 37.

(15) R. J. Grabenstet

⁽¹⁶⁾ R. W. **Taft,** Jr., "Steric Effects in Organic Chemistry", M. S. Newman, Ed., Wiley, New York, **1956,** p **556.**

⁽¹⁷⁾ A detailed experimental study of *pK* values for **7** and 8 will be reported elsewhere.

Figure **1.** Modiied column for flash chromatography (cf. ref **19).** A and A' are machined aluminum clamps secured with brass screws (a). B is an O-ring joint with an 85 mm \times 2 mm O-ring (b). C is an assembled column, with a Teflon N_2 inlet valve (c, d) and a pressure release vent (e). One (f) of two clamps is shown mounted.

Fisher-Johns hot-stage apparatus was used. All melting points are uncorrected. IR spectra were measured with a Beckman AccuLab 2 spectrometer. Proton (¹H) and fluorine (¹⁹F) magnetic resonance spectra were obtained with a Varian **T-60** or (proton) **XLFT-100** spectrometer. Phosphorous (slP) *NMR* spectra were recorded on a Varian **XLFT-100** ('H coupled) or FT-80A ('H decoupled) spectrometer. Chemical shifts are reported relative to internal Me₄Si (¹H), external CFCl₃ (¹⁹F), or external $\rm H_3PO_4$ (31P). In product analyses by ¹⁹F NMR, C_6F_6 was employed as an internal standard. Microanalyses were performed by Canadian Microanalytical Service and Galbraith Laboratories, Inc. Apparatus in contact with perchloryl fluoride was connected with Tygon tubing. Ground-glass joints were greased with **28-25** halocarbon grease, and **KF-3** halocarbon oil was used in gas bubblers (both available from Halocarbon Products Corp.). For general safety precautions with perchloryl fluoride, see ref 5. For preparative flash chromatography, the column design in ref **19** was modified by replacement of the pound-glass joints with **O-ring** joints secured by a metal yoke clamp (Figure **1)** to provide a more secure pressure seal with large columns. Separations were repeated if necessary on mixed fractions to give essentially complete recovery of isolated produck

Tetraethyl **Fluoromethanediphosphonate** (2a). A solution of tetraethyl methanediphosphonate²⁰ (12.3 g, 0.043 mol) in dry toluene (10 mL) was added dropwise under N_2 to a well-stirred partial solution of potassium tert-butoxide **(9.60** g, 0.086 mol) in the same solvent (80 mL) cooled externally with ice to 5 \degree C. Perchloryl fluoride⁶ was passed rapidly into the vigorously stirred mixture via a subsurface addition tube, producing a noticeably exothermic reaction. The temperature was maintained below **22** OC. When neutralization was evident (50 min, vide supra), the turbid reaction mixture was suction filtered through Celite. The precipitate was washed with several portions of ether and the combined filtrate evaporated (10 mm, 50 °C) to leave a mixture **(11.6** g) of 2a **(34%),** 3a **(21%),** and 4 **(7%).** Compounds 2a and 3a could not be easily separated by fractional distillation due to their **similar boiling** points. However, they were readily separated by conventional or (preferably) flash¹⁹ column chromatography.
Thus, the above reaction mixture (3.04 g) was eluted by flash chromatography on a **41** mm **X 460** mm column of **40-63-nm** silica gel **60** (E. Merck **No. 9385)** with ethyl acetate/ethanol **(91)** to yield four fractions, I-IV. Fraction IV **(6%)** was recovered starting material, and fraction I1 was a mixture which on further chromatography was resolved into I and 111. Fraction 111, identified **as** 2a, was vacuum distilled to give an analytical sample: colorless

oil; bp **112-115** "C **(0.02** mm); TLC (EtOAc) *R,* **0.31;** IR (neat) 1255 cm^{-1} (s, phosphoryl); ¹H NMR (CDCl₃) δ 1.38 (t, $J = 7 \text{ Hz}$, $4CH_3$, 4.30 $(m, 40CH_2)$, 5.00 $(dt, J_{HF} = 44 Hz, J_{HP} = 14 Hz, CHF);$ 19 **F** NMR (neat) δ 222.9 (dt, $J_{FP} = 61$ Hz, $J_{FH} = 44$ Hz); ³¹P NMR $(\text{neat}) \ \delta \ 12.3 \ (\text{ddp}, J_{\text{PF}} = 62 \text{ Hz}, J_{\text{PH}} = 14 \text{ Hz}, J_{\text{PH}} = 4 \text{ Hz}).$ Anal. Calcd for C₉H₂₁O₆FP₂: C, 35.30; H, 6.91. Found: C, **34.93,** H, **7.32.**

Tetraethyl Difluoromethanediphosphonate (3a). Fraction I from the above procedure, identified as 3a containing **a** little 4, was vacuum distilled to give an analytical sample: colorless oil; bp $98-99$ °C (0.01 mm) [lit.⁴ bp $115-118$ °C (0.4 mm)]; TLC (EtOAc) *R,* **0.53; IR** (neat) **1270** cm-' **(8,** phosphoryl); **'H** NMR (CDCl,) 6 **1.40** (t, *J* = **7** Hz, 4CH3), **4.35** (m, 40CHz) (lit.' 6 **1.40, 4.39); '9** NMR (CDC13) 6 **120.6** (t, *Jm* = **86** Hz) (lit.', 6 **122); 31P** NMR (CDCl₃) δ 4.3 (tp, J_{PF} = 86 Hz, J_{PH} = 4 Hz) (lit.⁴, δ 3.4).

Diethyl **difluoromethanephosphonate** (4a, from fraction I above): ¹H NMR δ 1.38 (t, $J = 7$ Hz, 2CH₃), 4.3 (m, 2OCH₂), J_{FP} = 90 \overline{Hz} , J_{FH} = 46 \overline{Hz}) (lit.⁴, δ 136); ³¹P NMR δ 4.1 (t, J_{PF} = 91 Hz). 5.97 (dt, J_{HP} = 26 Hz, J_{HF} = 48 Hz, F_2CH); ¹⁹F NMR δ 133.8 (dd,

Tetraisopropyl **Fluoromethanediphosphonate** (2b). By use of the same procedure, tetraisopropyl methanediphosphonate²¹ **(11.8** g, **0.0342** mol) was reacted with potassium tert-butoxide **(7.67** g, 0.0684 mol) in toluene **(70** mL) followed by perchloryl fluoride to yield **4.56** g **(42%)** of 2b and **5.56** g **(43%)** of 3b. Only a trace of diisopropyl **difluoromethanephosphonate** (4b) was detectable by ¹⁹F NMR. Further treatment of the isolated product mixture **(3.71** g, **0.01** mol) with potassium tert-butoxide **(0.75** g, **0.0067** mol) and perchloryl fluoride gave **2.78** g **(73%)** of 3b and **0.29** g (8%) of recovered 2b. When equimolar amounts of tetraisopropyl methanediphoephonate **(8.59** g, 0.025 mol) and potassium *tert*butoxide **(2.80** g, 0.025 mol) were combined similarly and treated with 1 equiv of perchloryl fluoride, 4.45 g (48%) of 2b was obtained with **1.3** g **(13%)** of 3b. The ester 2b was a colorless oil: bp **101-103** "C **(0.02** mm); TLC (EtOAc/benzene, **2:l)** *Rf* **0.33;** IR (neat) 1258 cm^{-1} (s, phosphoryl); ¹H NMR δ 1.26 (d, $J = 6$ Hz, 8CH₃), 4.77 (m, OCH), 4.82 (dt, $J_{HP} = 14$ Hz, $J_{HF} = 44$ Hz, CFH); ⁹¹P NMR (neat) δ 221 (dt, $J_{FP} = 63$ Hz, $J_{FH} = 44$ Hz); ³¹P NMR $(\text{neat}) \ \delta \ 10.7 \ (\text{ddt}, J_{\text{PF}} = 63 \ \text{Hz}, J_{\text{PH}} = 12 \ \text{Hz}, J_{\text{PH}} = 3 \ \text{Hz}).$ Anal. Calcd for $C_{13}H_{29}O_6FP_2$: C, 43.09; H, 8.07. Found: C,

42.96; H, **8.37.**

Tetraisopropyl **Difluoromethanediphosphonate** (3b). The compound was isolated **as** a colorleas oil: bp **97-100** "C **(0.01** mm); TLC (EtOAc/benzene, 2:1) R_f 0.55; IR (neat) 1270 cm⁻¹ (s, phosphoryl); 'H NMR (CDCl₃) 6 1.40 (d, $J = 6$ Hz, 8CH₃), 4.93
(m, 4OCH); ¹⁹F NMR (neat) δ 121 (t, $J_{\rm FP} = 85$ Hz); ³¹P NMR $(\text{heat}) \, \delta \, 2.80 \, (\text{tt}, J_{\text{PF}} = 84 \, \text{Hz}, J_{\text{PH}} = 3 \, \text{Hz}).$ $\frac{1}{2}$ **phosphoryl)**: ¹H NMR (CDCl₂) δ 1.40 (d, $J = 6$ Hz, 8CH₃), 4.93

Anal. Calcd for $C_{13}H_{28}O_6F_2P_2$: C, 41.05; H, 7.42. Found: C, **40.82;** H, **7.67.**

Tetrakis(trimethylsily1) Fluoromethanediphosphonate (5). Bromotrimethylsilanezz **(15.3** g, **0.100** mol) was added dropwise with stirring to **6.15** g **(0.0200** mol) of 2a. After **3** h at room temperature and an additional **3** h at *50* "C, ethyl bromide and excess silylating reagent were removed by rotary evaporation at reduced pressure to leave **9.65** g **(100%)** of the crude product, which was distilled to give **6.95** g **(72%)** pure 5: colorless oil; bp 99-100 °C (0.01 mm); ¹H NMR δ 0.35 (s, 12CH₃), 4.74 (dt, J_{HF} $J_{\text{FP}} = 68 \text{ Hz}$; ³¹P NMR δ -7.3 (d, $J_{\text{PF}} = 67 \text{ Hz}$). The same product was obtained on similar treatment of 2b with longer heating. $= 47 \text{ Hz}, J_{HP} = 14 \text{ Hz}, \text{FCH}; \, {}^{19}\text{F} \text{ NMR } \delta$ 218 (dt, $J_{PH} = 46 \text{ Hz},$
 $= 47 \text{ Hz}, J_{HP} = 14 \text{ Hz}, \text{FCH}; \, {}^{19}\text{F} \text{ NMR } \delta$ 218 (dt, $J_{PH} = 46 \text{ Hz},$

Tetrakis(trimethylsily1) Difluoromethanediphosphonate **(6).** Bromotrimethylsilane **(7.7** g, 0.050 mol) was stirred with **3a (3.00** g, **0.0092** mol) at room temperature overnight. Evaporation **as** above gave **4.52** g **(98%)** of **6;** vacuum distillation provided an analytical sample: 3.30 g (72%); bp 93-95 °C (0.02 mm); ¹H NMR δ 0.37 (s, 12CH₃); ¹⁹F NMR δ 121 (t, *J_{FP}* = 90 Hz); ³¹P NMR δ -15.0 (t, $J_{PF} = 90$ Hz). The same product was obtained on reaction of bromotrimethylsilane with 3b under more vigorous conditions (10 h at 70 °C).

C, **30.93;** H, **7.51.** Anal. Calcd for C13H,0,\$'zP2Si4: C, **31.18;** H, **7.25.** Found

⁽²⁰⁾ J. A. Cade, J. Chem. Soe., 2266 (1959).

⁽²¹⁾ C. H. Roy, U.S. Patent 3 251 907 (1966).

⁽¹⁹⁾ W. C. Still, M. Kahn, and A. Mitra, J. *Org.* **Chem., 43,2923 (1978).**

⁽²²⁾ W. F. Gilliam, R. N. Meals, and R. 0. Snuer, J. Am. Chem. Soe., 68, 1161 (1946). This **is also available from Aldrich Chemical Co.**

Fluoromethanediphosphonic Acid (7). To 5.5 g (0.011 mol) of 5 in a 50-mL round-bottomed flask flushed with N_2 was added, with stirring, $20 \text{ mL of } H₂O$. After 30 min , the organic phase was **separated,** and the aqueous phase was extracted twice with 15-mL portions of Et_2O and then evaporated to dryness. Further drying over P_2O_5 at 0.001 mm gave 2.04 g (96%) of the pure acid as a deliquescent, waxy, white solid: mp 162-163 **"C; 'BF** NMR 6 225 neutralization equivalent 195 (calcd for CH₅O₆FP₂ 194). It was further characterized **as** the dicyclohexylamine salt **9:** a solution of 0.194 g (0.001 mol) of **7** in 0.8 mL of MeOH was added to a solution of dicyclohexylamine (0.73 g, 0.004 mol) in a mixture of 0.5 mL of acetone and 0.8 mL of benzene. The resulting precipitate was collected by filtration, washed with cold benzene, and dried, giving 0.57 g (77%) of the derivative. Analysis was performed on a twice-recrystallized sample dried in vacuo at 120 °C; mp 223-224 °C dec. $(\text{dt}, J_{\text{FH}} = 46 \text{ Hz}, J_{\text{FP}} = 63 \text{ Hz});$ ³¹P NMR δ 10.5 (d, $J_{\text{PF}} = 64 \text{ Hz};$

Anal. Calcd for $C_{37}H_{74}O_6FN_3P_2$: C, 60.22; H, 10.11; N, 5.69. Found: C, 60.09; H, 10.06; N, 5.66.

Difluoromethanediphosphonic Acid (8). By use of the above procedure, 2.85 g (0.0057 mol) of **6** was hydrolyzed with 15 mL of HzO to yield 1.20 g (99%) of 8 **as** a viscous liquid which solidified on prolonged drying $(0.01 \text{ mm}, \text{over } P_2O_5)$: mp 87-90 °C; ¹H NMR (no resonances in D₂O); ¹⁹F NMR δ 121 (t, J_{FP} = 86 Hz); ³¹P NMR δ 3.7 (t, J_{PF} = 86 Hz); neutralization equivalent 214 (calcd for $\text{CH}_4\text{O}_6\text{F}_2\text{P}_2$ 212). The dicyclohexylamine salt 10 had a melting point of 259-260 °C.

Anal. Calcd for $C_{37}H_{73}O_6F_2N_3P_2$: C, 58.79; H, 9.73; N, 5.56. Found: C, 58.55; H, 9.52; N, 5.47.

Acknowledgment. We thank Dr. S. Prakash for obtaining the FT80A NMR spectra and Mr. Brian Goldfine for preparing the starting phosphonate esters. This research was made possible by a grant from the H. F. Frasch Foundation (HFF-77).

Registry **No.** la, 1660-94-2; **lb,** 1660-95-3; **2a,** 78715-56-7; **2b,** 78715-57-8; **3a,** 78715-58-9; **3b,** 78715-59-0; **4a,** 1478-53-1; **4b,** 681- 78715-62-5; **10,** 78715-63-6; perchloryl fluoride, 7616-94-6. 80-1; *5,* 78715-60-3; **6,** 78715-61-4; 7, 10595-93-4; **8,** 10596-32-4; **9,**

Papyriferic Acid: a Triterpenoid from Alaskan Paper Birch

Paul B. Reichardt

Department of Chemistry, University of Alaska, Fairbanks, Alaska 99701

Received May 4,1981

Chemical investigation of the herbivore-deterrent extract of Alaskan paper birch1 *(Betula papyrifera* ssp. *humilis)* has led to the isolation and structure determination of papyriferic acid (1; see Chart I), a major triterpenoid of the juvenile stage of this species. Examination of the crude ether extract of juvenile twigs of *B. papyrifera* ssp. *humilis* by thin-layer chromatography (TLC) revealed a major component which could be eluted from silica gel with 20% methanol in diethyl ether. Trituration of the concentrated eluate with diethyl ether followed by recrystallization from acetone/cyclohexane afforded crystalline 1 $(C_{35}H_{56}O_8)$. Infrared spectroscopy indicated the presence **of** ester *(u* $= 1752$ cm⁻¹) and carboxylic acid ($\nu = 3570-2500$, 1689 cm-9 groups. The 'H NMR spectrum (360 **MHz)** indicated a triterpene structure (eight methyl groups as 3H singlets in the δ 0.86-1.2 region), two acylated secondary alcohols δ 4.72 (1 H, t, $J = 2.2$ Hz), 4.83 (1 H, dt, $J = 5.2$,

chart **I** $\mathbb{P}_1 \twoheadrightarrow \otimes \mathbb{C}\oplus_{2} \mathbb{C} \mathbb{P}_2 \mathbb{H}$ $P_{\rm H}$ = 0003 \mathbb{R}^2 = cree, relate \mathbb{R}_+ = \mathbb{R}_+ = \mathbb{R} $P_2 \neq PNR$ $B_0 = 330R_0CD_0R$ \approx = 200% $R_2 = 0.08, 0.3R_3$ \approx COORLOOK $= \cos\theta$ E inner

10.4 Hz)], one of which apparently occurred **as** an acetate [6 2.02 (3 **H,** s)], and a secondary alcohol or ether [6 3.67 $(1 \text{ H}, t, J = 7.0 \text{ Hz})$. An unusual 2H singlet at δ 3.48 was also evident. The 13C NMR spectrum of 1 confirmed the presence of 35 **carbons** and indicated the presence of three secondary (75.6,80.5,83.3 ppm) and two tertiary (71.2,85.8 ppm) carbons singly bonded to oxygen **as** well as three carbonyl groups (167.3, 169.1, 170.1 ppm).

Treatment of **1** with diazomethane produced a methyl ester **(2)** which displayed an infrared spectrum in which hydroxyl $(\nu = 3580, 3400 \text{ cm}^{-1})$ and ester $(\nu = 1760, 1740)$ cm-') groups were evident.

The major structural features of 1 were elucidated by saponification to a triol having physical and spectral properties identical with those of betulafolientriol oxide \overline{I} (3),² a constituent of two Japanese species of birch. The identity of **3** was confirmed by comparison **of** its infrared spectrum and chromatographic properties with those of an authentic sample of betulafolientriol oxide I.3

Consideration of the molecular compositions and **'H** NMR spectra of 1-3 led to assignments of the acylating groups in 1 as acetyl (δ 2.02 (3 H, s)] and malonyl [δ 3.48 (2 **H,** s)]. While the 'H NMR spectrum of 1 required that it be a diacylated form of **3** in which the secondary hydroxyl groups of 3 (C-3 and C-12) were derivatized, the exact placement of acetate and malonate (i.e., 1 vs. **4)** was less straightforward. The tentative structural assignment of 1 was based upon the mass spectral data from methyl ester **2. A** low-intensity ion (ca. 3% of the base *peak)* **was** observed at m/e 307.194392 ($C_{18}H_{27}O_4$) and was assignable to ion 7 from the well-known AB ring fragment of dam-
maranes.⁴ No such ion was seen at m/e 249, corre-No such ion was seen at m/e 249, corresponding to the ion **8** expected from fragmentation of the alternative ester **5.5** This assignment was confirmed by

⁽¹⁾ Bryant, J. P. In "Proceedings of the **1st** International Logomorph Conference"; Meyeur, K., Ed.; Guelph University: Guelph, Ontario, Canada, in press.

^{(2) (}a) Nagai, M.; Tanaka, N.; Tanaka, *0.;* Ichikawa, **S.** Chem. *Phrm.* Bull. 1973,21,2061. (b) Ohmoto, T.; Nikaido, T.; Ikuse, M. *Ibid.* 1978,

^{26, 1437.&}lt;br>(3) Both a sample and infrared spectrum of betulafolientriol oxide I

⁽³⁾ Both a sample and infrared spectrum of betulafolientriol oxide I
were provided by Dr. T. Ohmoto of Toho University.
(4) Enzel, C. R.; Appleton, R. A.; Wahlberg, I. In "Biochemical Applications of Mass Spectrometry"; W

^{1979;} p 370.
(5) This analysis was carried out with 2 instead of 1 because in the (5) This analysis was carried out with 2 instead of 1 because in the mass spectrum of 1 the only discernible oxygenated AB fragment was observed at m/e 249.187 252 (C₁₆H₂₆O₂). This ion can, in retrospect, be assign has already taken place but is equally consistent with placement of ace-
tate at C-3 (i.e., 4). The intensities of oxygenated AB fragment ions in these spectra are low due to facile ester pyrolysis leading to $C_{14}H_{21}$ (m/e) 189).